HeRO

Jeffrey H. Lawson, M.D., Ph.D.

Departments of Surgery and Pathology Duke University Medical Center Durham, North Carolina

Disclosures

Consulting, Clinical Trials and Opinion

<u>Hemosphere</u>

Ark Therapeutics

Baxter Research

Lemaitre American Heart

Johnson & Johnson/Ethicon ACS

Endologix NIH

Zymogenetics ADA

Gore Medical HHMI

Atrium Medical

NovoNordisk

Pervasis Therapeutics

Nanovasc

Superheroes

Heroes

Hemodialysis with Reliable Outflow (HeRO)

The Problem: Central venous occlusion

- Recurrent central venous instrumentation
- Central venous catheters
- Balloon Angioplasty
- Central venous stents
- Shear stresses
- HD associated Inflammation
- Aggressive venous intimal hyperplasia

Current Options

- Lower extremity AV access
 - increased risk of infection
 - greater risk for LE steal

Current Options

Direct bypass to right atrium or CV reconstruction

- Requires sternotomy or thoracotomy
- High morbidity
- Sternal wounds
- Graft infections
- Pleural or pericardial effusions

Current Options

- "Destination" Dialysis Catheter
 - Increased infection risk
 - poorer dialysis adequacy
 - greater number of interventions
 - highest cost to healthcare system

Death via Catheter Sepsis!!

Transhepatic Permcath

C.W. 50 yo BF with No Access

Proposed Solution

Central Venous Recanalization

With <u>He</u>modialysis <u>R</u>eliable <u>O</u>utflow as adjunct

Occluded SVC with Access to the RA via the L Subclavian Vein

- 66 year old woman
 with multiple
 extremity access
 grafts currently
 dialyzed through a left
 internal jugular TDC
- History of prior SVC occlusion managed with angioplasty and stenting

History Of Occluded SVC, but access to the SVC via the Subclavian

Implantation Specifics

HeRO Implant Side

HeRO Implant Side	% (n/N)
Right	58.5 (24/41)
Left	39.0 (16/41)
Right → Left	2.4 (1/41)

Implantations Specifics

Outflow Vein		
Outflow	% (n/N)	
SVC	90.2 (37/41)	
Azygos	7.3 (3/41)	
IVC	2.4 (1/41)	

Patency & Intervention Rates

	Duke 6 months	Multi Center Trial 8.6 mo mean f/u ¹	AVG literature 6 months ²	TDC literature 6 months
Patency Primary, % Secondary, %	68.3 a 87.8 b	38.9 72.2	58 76	50 ^{5, 6} 55 ^{5, 6}
Intervention Rates, per year	1.38	2.5	1.6-2.4 ^{3,4}	5.8 ^{5, 6}

- 1. Katzman HE, et al. Initial Experience and Outcome of a New Hemodialysis Access Device for Catheter-Dependent Patients. J Vasc Surg 2009;50:600-07.
- 2. Sidawy AN, et al. Recommended Standards for Reports Dealing with Arteiovenous Hemodialysis Access. J Vasc Surg 2002;35:603-10.
- 3. Bosman PJ, et al. A Comparison Between PTFE and Denatured Homologuous Vein Grafts for Haemodialysis Access: A Prospective Randomized Multicenter Trial. Eur J Vasc Endovasc Surg 1998;16:126-32.
- 4. Madden RL, et al. A Comparison of Cryopreserved Vein Allographs and Prostetic Grafts for Hemodialysis Access. Ann Vasc Surg 2005; 19:686-91.
- 5. Rocklin MA, et al. Comparison of cuffed tunneled hemodialysis catheter survival. Am J Kidney Dis 2001;37:557-63.
- 6. Duszak R, et al. Replacement of failing tunneled hemodialysiscatheters through pre-existing subcutaneous tunnels: a comparison of catheter function and infection rates for de novo placements and over-the -wire exchanges. J Vasc Interv Radiol 1998;9:321-7.
- a. (n/N) 19/28 patients
- b. (n/N) 32/36 patients

Infection Rates

HeRO Cohorts	No.	Total Days	Bacteremia events	Bacteremia rate/1000 days	(TDC) Control rate/1000 days ¹
Overall					
Duke	41	10,058	10	1.29	2.3
Multicenter ¹	36	9931	7	0.70	
Bridging Period					
Duke	39	2729	10	3.66	1.6-5.5
Multicenter ¹	32	1373	7	5.10	
Alone					
Duke	35	7120	3	0.42	2.3
Multicenter ¹	29	8525	0	0.00	

^{1.} Katzman HE, et al. Initial Experience and Outcome of a New Hemodialysis Access Device for Catheter-Dependent Patients. J Vasc Surg 2009;50:600-07.

The HeRO Body Floss

Right BCV & SVC Occlusion

Collateral veins

Occluded Left BCV stent

Axillary and Femoral vein access

- Low profile directional catheters
- Long rigid sheath
- TIPS needle

Crossed occlusion

- Through and through venous access
- "body floss"
- "trackability"

Balloon Angioplasty

Dilate tract

Low profile catheter implanted as place-holder

Results

CVR Specifics	
Successful CVR, % (n/N)	83.3 (15/18)
Thru & Thru access, % (n/N)	67 (10/15)
Catheter placed, % (n/N)	87 (13/15)
CVR to HeRO (days), mean (range)	32.5 (0-148)

Results

HeRO Implant Specifics			
Successful implants, % (n/N)	93.3% (14/15)		
Side of body, % (n/N)			
Right	64 (9/14)		
Insertion vein, % (n/N)			
Subclavian	36 (5/14)		
Internal Jug	29 (4/14)		
External Jug	14 (2/14)		
Other	21 (3/14)		

Results

- Intervention
 - Overall 71% FFI
- Infection
 - 1 HeRO related infection
 - required interposition replacement of ePTFE
- Death
 - 3 deaths (21%)
 - All unrelated to recanalization or HeRO implant

Conclusions

- Central venous recanalization is feasible
- HeRO device allows for durable access
- Maintain upper body access
- Patency & intervention is acceptable
- Reduced cost to healthcare system
- Reduced morbidity and mortality