CENTRAL VENOUS RECANALIZATION AND SUBSEQUENT IMPLANTATION OF THE HeRO® DEVICE IN CATHETER DEPENDENT PATIENTS

Shawn M. Gage PA-C, P. Joshua O’Brien MD, Charles Y. Kim MD, and Jeffrey H. Lawson MD, PhD.

Section of Vascular Surgery and Division of Interventional Radiology
Duke University Medical Center
Durham, North Carolina, United States of America
Disclosures

• Shawn M. Gage – Hemosphere, Inc.
 - consultant
• P. Joshua O’Brien – none
• Charles Y. Kim - none
• Jeffrey H. Lawson – Hemosphere, Inc.
 - research funding
 - consultant
The Problem: Central venous occlusion

- Recurrent central venous instrumentation
- Central venous catheters
- Balloon Angioplasty
- Central venous stents
- Shear stresses
- HD associated Inflammation
- Aggressive venous intimal hyperplasia
Current Options

• Lower extremity AV access
 - increased risk of infection
 - greater risk for LE steal
Current Options

Direct bypass to right atrium or CV reconstruction

- Requires sternotomy or thoracotomy
- High morbidity
- Sternal wounds
- Graft infections
- Pleural or pericardial effusions
Current Options

• “Destination” Dialysis Catheter
 - Increased infection risk
 - poorer dialysis adequacy
 - greater number of interventions
 - highest cost to healthcare system
Proposed Solution

Central Venous Recanalization

With Hemodialysis Reliable Outflow as adjunct
Recanalization Procedure

- Upper and lower extremity venous access
- Multi-projection imaging
- Low profile catheters
- Sharp recanalization
- Through-and-through guidewire access
- Balloon angioplasty
- Access place-holder
Right BCV & SVC Occlusion

Collateral veins

Occluded Left BCV stent
Axillary and Femoral vein access

- Low profile directional catheters
- Long rigid sheath
- TIPS needle
Crossed occlusion

- Through and through venous access
- “body floss”
- “trackability”
Balloon Angioplasty

- Dilate tract
Low profile catheter implanted as place-holder
A Brief Review

- **HeRO™ Hemodialysis Reliable Outflow**
- Hybrid vascular access device “graft-cath”
- 2 primary components: ePTFE graft with Titanium connector 6mm ID, and radiopaque silicone outflow component with braided nitinol reinforcement 5mm ID
- Common access veins include: Subclavian and Internal Jugular
- End stage access device
- Indicated for catheter dependent patients with central venous stenosis and/or occlusion
Cut down on catheter for access
Wire access to IVC
Peel-away sheath
Outflow component
Connect Outflow component to PTFE

Silicone outflow component
ePTFE graft
Tunnel graft and obtain inflow
Patients and Methods

- Single center retrospective review
- 18 ESRD patients
- All with total central venous occlusion
- All dialysis catheter dependent (femoral or trans-hepatic)
Results

Demographics

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, mean (range)</td>
<td>50.1 (25-74)</td>
</tr>
<tr>
<td>Male, % (n/N)</td>
<td>46 (8/18)</td>
</tr>
<tr>
<td>Race, % (n/N)</td>
<td></td>
</tr>
<tr>
<td>Black/African American</td>
<td>78 (14/18)</td>
</tr>
<tr>
<td>White/Caucasian</td>
<td>22 (4/18)</td>
</tr>
<tr>
<td>BMI, mean (range)</td>
<td>32.6 (16-48.2)</td>
</tr>
</tbody>
</table>
Results

CVR Specifics

<table>
<thead>
<tr>
<th>Category</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Successful CVR, % (n/N)</td>
<td>83.3 (15/18)</td>
</tr>
<tr>
<td>Thru & Thru access, % (n/N)</td>
<td>67 (10/15)</td>
</tr>
<tr>
<td>Catheter placed, % (n/N)</td>
<td>87 (13/15)</td>
</tr>
<tr>
<td>CVR to HeRO (days), mean (range)</td>
<td>32.5 (0-148)</td>
</tr>
</tbody>
</table>
Results

HeRO Implant Specifics

<table>
<thead>
<tr>
<th></th>
<th>Successful implants, % (n/N)</th>
<th>Side of body, % (n/N)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Right</td>
</tr>
<tr>
<td></td>
<td></td>
<td>64 (9/14)</td>
</tr>
<tr>
<td>Insertion vein, % (n/N)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subclavian</td>
<td></td>
<td>36 (5/14)</td>
</tr>
<tr>
<td>Internal Jug</td>
<td></td>
<td>29 (4/14)</td>
</tr>
<tr>
<td>External Jug</td>
<td></td>
<td>14 (2/14)</td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td>21 (3/14)</td>
</tr>
</tbody>
</table>
Patency Rates

<table>
<thead>
<tr>
<th>Patency</th>
<th>6 months</th>
<th>12 months</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary, % (n/N)</td>
<td>57% (4/7)</td>
<td>50% (2/4)</td>
</tr>
<tr>
<td>Secondary, % (n/N)</td>
<td>100% (7/7)</td>
<td>100% (4/4)</td>
</tr>
</tbody>
</table>
Results

- Intervention
 - Overall 71% FFI
- Infection
 - 1 HeRO related infection
 - required interposition replacement of ePTFE
- Death
 - 3 deaths (21%)
 - All unrelated to recanalization or HeRO implant
Conclusions

• Central venous recanalization is feasible
• HeRO device allows for durable access
• Maintain upper body access
• Patency & intervention is acceptable
• Reduced cost to healthcare system
• Reduced morbidity and mortality
Thank You

Shawn M. Gage, PA-C
Section of Vascular Surgery
Duke University Medical Center